Early signaling events triggered by peroxovanadium [bpV(phen)] are insulin receptor kinase (IRK)-dependent: specificity of inhibition of IRK-associated protein tyrosine phosphatase(s) by bpV(phen).
نویسندگان
چکیده
Peroxovanadiums (pVs) are potent protein tyrosine phosphatase (PTP) inhibitors with insulin-mimetic properties in vivo and in vitro. We have established the existence of an insulin receptor kinase (IRK)-associated PTP whose inhibition by pVs correlates closely with IRK tyrosine phosphorylation, activation, and downstream signaling. pVs have also been shown to activate various tyrosine kinases (TKs) that could participate in activation of the insulin-signaling pathway. In the present study we have sought to determine whether pV-induced IRK tyrosine phosphorylation requires the intrinsic kinase activity of the IRK, and whether IRK activation is necessary to realize the early steps in the insulin-signaling cascade. To address this we evaluated the effect of a pure pV compound, bis peroxovanadium 1,10-phenanthroline [bpV(phen)], in HTC rat hepatoma cells overexpressing normal (HTC-IR) or kinase-deficient (HTC-M1030) mutant IRKs. We showed that at a dose of 0.1 mM, but not 1 mM, bpV(phen) induced IRK-dependent events. Thus, 0.1 mM bpV(phen) increased tyrosine phosphorylation and IRK activity in HTC-IR but not HTC-M1030 cells. Tyrosine phosphorylation of insulin signal-transducing molecules was promoted in HTC-IR but not HTC-M1030 cells by bpV(phen). The association of p185 and p60 with the src homology-2 (SH2) domains of Syp and the p85-regulatory subunit of phosphatidylinositol 3'-kinase was induced by bpV(phen) in HTC-IR, but not in HTC-M1030 cells, as was insulin receptor substrate-1-associated phosphatidylinositol 3'-kinase activity. Thus autophosphorylation and activation of the IRK by bpV(phen) is effected by the IRK itself, and the early events in the insulin- signaling cascade follow from this activation event. This establishes a critical role for PTP(s) in the regulation of IRK activity. bpV(phen) could be distinguished from insulin only in its ability to activate ERK1 in HTC-M1030 cells, thus indicating that this event is IRK independent, consistent with our previous hypothesis that bpV(phen) inhibits a PTP involved in the negative regulation of mitogen-activated protein kinases.
منابع مشابه
Insulin receptor kinase-associated phosphotyrosine phosphatases in hepatic endosomes: assessing the role of phosphotyrosine phosphatase-1B.
Previous work has shown that bisperoxo(1,10-phenanthroline)-oxovanadate(v) anion [bpV(phen)] induces potent insulin-mimicking effects in the rat, selectively activates the endosomal (EN) insulin receptor kinase (IRK) in liver, and markedly abolishes endosomal IRK-associated phosphotyrosine phosphatase (PTP) activity while reducing that of total ENs by approximately 30%. In this study we examine...
متن کاملRole of protein tyrosine phosphatases in the regulation of interferon-{gamma}-induced macrophage nitric oxide generation: implication of ERK pathway and AP-1 activation.
NO is a potent molecule involved in the cytotoxic events mediated by macrophages (MØ) against microorganisms. We reported previously that inhibition of MØ protein tyrosine phosphatases (PTPs) mediates a protective effect against Leishmania infection, which was NO-dependent. Herein, we show that the PTP inhibitors of the peroxovanadium (pV) class, bpV(phen) and bpV(pic), can similarly increase m...
متن کاملRole of protein tyrosine phosphatases in the regulation of interferon- -induced macrophage nitric oxide generation: implication of ERK pathway and AP-1 activation
NO is a potent molecule involved in the cytotoxic events mediated by macrophages (MØ) against microorganisms. We reported previously that inhibition of MØ protein tyrosine phosphatases (PTPs) mediates a protective effect against Leishmania infection, which was NO-dependent. Herein, we show that the PTP inhibitors of the peroxovanadium (pV) class, bpV(phen) and bpV(pic), can similarly increase m...
متن کاملSmall-molecule protein tyrosine phosphatase inhibition as a neuroprotective treatment after spinal cord injury in adult rats.
Spinal cord injury causes progressive secondary tissue degeneration, leaving many injured people with neurological disabilities. There are no satisfactory neuroprotective treatments. Protein tyrosine phosphatases inactivate neurotrophic factor receptors and downstream intracellular signaling molecules. Thus, we tested whether the peroxovanadium compound potassium bisperoxo(1,10-phenanthroline)o...
متن کاملInitiation of human myoblast differentiation via dephosphorylation of Kir2.1 K+ channels at tyrosine 242.
Myoblast differentiation is essential to skeletal muscle formation and repair. The earliest detectable event leading to human myoblast differentiation is an upregulation of Kir2.1 channel activity, which causes a negative shift (hyperpolarization) of the resting potential of myoblasts. After exploring various mechanisms, we found that this upregulation of Kir2.1 was due to dephosphorylation of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular endocrinology
دوره 11 13 شماره
صفحات -
تاریخ انتشار 1997